Your browser doesn't support javascript.
Шоу: 20 | 50 | 100
Результаты 1 - 20 de 21
Фильтр
Добавить фильтры

база данных
Годовой диапазон
1.
Artif Organs ; 45(12): 1522-1532, 2021 Dec.
Статья в английский | MEDLINE | ID: covidwho-1526346

Реферат

Disturbed oxygenation is foremost the leading clinical presentation in COVID-19 patients. However, a small proportion also develop carbon dioxide removal problems. The Advanced Organ Support (ADVOS) therapy (ADVITOS GmbH, Munich, Germany) uses a less invasive approach by combining extracorporeal CO2 -removal and multiple organ support for the liver and the kidneys in a single hemodialysis device. The aim of our study is to evaluate the ADVOS system as treatment option in-COVID-19 patients with multi-organ failure and carbon dioxide removal problems. COVID-19 patients suffering from severe respiratory insufficiency, receiving at least two treatments with the ADVOS multi system (ADVITOS GmbH, Munich, Germany), were eligible for study inclusion. Briefly, these included patients with acute kidney injury (AKI) according to KDIGO guidelines, and moderate or severe ARDS according to the Berlin definition, who were on invasive mechanical ventilation for more than 72 hours. In total, nine COVID-19 patients (137 ADVOS treatment sessions with a median of 10 treatments per patient) with moderate to severe ARDS and carbon dioxide removal problems were analyzed. During the ADVOS treatments, a rapid correction of acid-base balance and a continuous CO2 removal could be observed. We observed a median continuous CO2 removal of 49.2 mL/min (IQR: 26.9-72.3 mL/min) with some treatments achieving up to 160 mL/min. The CO2 removal significantly correlated with blood flow (Pearson 0.421; P < .001), PaCO2 (0.341, P < .001) and HCO 3 - levels (0.568, P < .001) at the start of the treatment. The continuous treatment led to a significant reduction in PaCO2 from baseline to the last ADVOS treatment. In conclusion, it was feasible to remove CO2 using the ADVOS system in our cohort of COVID-19 patients with acute respiratory distress syndrome and multiorgan failure. This efficient removal of CO2 was achieved at blood flows up to 300 mL/min using a conventional hemodialysis catheter and without a membrane lung or a gas phase.


Тема - темы
COVID-19/therapy , Carbon Dioxide/blood , Extracorporeal Circulation/instrumentation , Lung/physiopathology , Multiple Organ Failure/therapy , Renal Dialysis/instrumentation , Respiration, Artificial , Aged , COVID-19/blood , COVID-19/diagnosis , COVID-19/physiopathology , Critical Illness , Extracorporeal Circulation/adverse effects , Female , Humans , Male , Middle Aged , Multiple Organ Failure/blood , Multiple Organ Failure/diagnosis , Multiple Organ Failure/physiopathology , Renal Dialysis/adverse effects , Respiration, Artificial/adverse effects , Time Factors , Treatment Outcome
2.
Medicine (Baltimore) ; 100(41): e27400, 2021 Oct 15.
Статья в английский | MEDLINE | ID: covidwho-1501201

Реферат

ABSTRACT: To depict the clinical characters and prognosis of coronavirus disease 2019 patients who developed multiple organ dysfunction syndrome (MODS).A cohort consisted of 526 patients, which including 109 patients complicated MODS, was retrospectively analyzed to examine the clinical characteristics and risk factors of MODS.Among the 526 novel coronavirus-infected pneumonia patients, 109 patients developed multiple organ failure, the incidence rate was 20.7%. Among all 109 patients with MODS, 81.7% were over 60 years old, and 63.3% were male. The most common symptoms were fever (79.8%), dyspnea (73.4%), and fatigue (55.0%). Compared with patients non-MODS patients, there were 70 cases of MODS patients with one or more underlying diseases (64.2% vs 41.0%, P < .001). Respiratory failure (92.7%), circulatory failure (52.0%), and liver function injury (30.9%) were the most common symptoms within the spectrum of MODS. Invasive ventilator, noninvasive ventilator, and high-flow respiratory support treatment for patients in MODS patients were higher than those in the non-MODS group (P < .001). The antiviral therapy and 2 or more antibacterial drug treatments in MODS patients were higher than those in the non-MODS group (P < .001). The median hospital stay of all patients was 16 days (interquartile range [IQR], 9-26), of which 20 days (IQR, 11.5-30.5) in the MODS patients, which was approximately 4 days longer than that of non-MODS patients. In addition, our data suggested that lymphocyte counts <1.0 ∗ 109/L, Troponin T > 0.014 ng/mL and lower oxygenation index were risk factors for MODS. In the early stage of hospital admission, higher inflammatory indexes and lactic acid concentration were associated with increased risk of death.MODS often leads to poor prognosis in coronavirus disease 2019. Our data suggested the importance of early identification of MODS. We recommend close monitoring and timely supportive therapy for patients with high risks, stopping the disease progression before it was too late.


Тема - темы
COVID-19/epidemiology , Multiple Organ Failure/epidemiology , Aged , COVID-19/physiopathology , Comorbidity , Female , Humans , Incidence , Male , Middle Aged , Multiple Organ Failure/etiology , Multiple Organ Failure/physiopathology , Pandemics , Proportional Hazards Models , Retrospective Studies , Risk Factors , SARS-CoV-2
3.
Biomed Pharmacother ; 143: 112158, 2021 Nov.
Статья в английский | MEDLINE | ID: covidwho-1385086

Реферат

COVID-19 (Corona Virus Disease-2019) is an infectious disease caused by a novel coronavirus, known as the acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This is a highly contagious disease that has already affected more than 220 countries globally, infecting more than 212 million people and resulting in the death of over 4.4 million people. This review aims to highlight the pertinent documentary evidence upon the adverse effects of the SARS-CoV-2 infection on several vital human organs. SARS-CoV-2 primarily targets the lung tissue by causing diffuse alveolar damage and may result in Acute Respiratory Distress Syndrome (ARDS). SARS-CoV-2 infects the cell via cell surface receptor, angiotensin-converting enzyme 2 (ACE2). Besides lungs, SARS-CoV-2 critically damage tissues in other vital human organs such as the heart, kidney, liver, brain, and gastrointestinal tract. The effect on the heart includes muscle dysfunction (acute or protracted heart failure), myocarditis, and cell necrosis. Within hepatic tissue, it alters serum aminotransferase, total bilirubin, and gamma-glutamyl transferase levels. It contributes to acute kidney injury (AKI). Localized infection of the brain can lead to loss or attenuation of olfaction, muscular pain, headaches, encephalopathy, dizziness, dysgeusia, psychomotor disorders, and stroke; while the gastrointestinal symptoms include the disruption of the normal intestinal mucosa, leading to diarrhea and abdominal pain. This review encompassed a topical streak of systemic malfunctions caused by the SARS-CoV-2 infection. As the pandemic is still in progress, more studies will enrich our understanding and analysis of this disease.


Тема - темы
COVID-19 , Multiple Organ Failure , SARS-CoV-2 , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/diagnosis , COVID-19/metabolism , COVID-19/physiopathology , Humans , Multiple Organ Failure/physiopathology , Multiple Organ Failure/virology , SARS-CoV-2/pathogenicity , SARS-CoV-2/physiology
4.
Sci Rep ; 11(1): 15872, 2021 08 05.
Статья в английский | MEDLINE | ID: covidwho-1345580

Реферат

COVID-19-associated respiratory failure offers the unprecedented opportunity to evaluate the differential host response to a uniform pathogenic insult. Understanding whether there are distinct subphenotypes of severe COVID-19 may offer insight into its pathophysiology. Sequential Organ Failure Assessment (SOFA) score is an objective and comprehensive measurement that measures dysfunction severity of six organ systems, i.e., cardiovascular, central nervous system, coagulation, liver, renal, and respiration. Our aim was to identify and characterize distinct subphenotypes of COVID-19 critical illness defined by the post-intubation trajectory of SOFA score. Intubated COVID-19 patients at two hospitals in New York city were leveraged as development and validation cohorts. Patients were grouped into mild, intermediate, and severe strata by their baseline post-intubation SOFA. Hierarchical agglomerative clustering was performed within each stratum to detect subphenotypes based on similarities amongst SOFA score trajectories evaluated by Dynamic Time Warping. Distinct worsening and recovering subphenotypes were identified within each stratum, which had distinct 7-day post-intubation SOFA progression trends. Patients in the worsening suphenotypes had a higher mortality than those in the recovering subphenotypes within each stratum (mild stratum, 29.7% vs. 10.3%, p = 0.033; intermediate stratum, 29.3% vs. 8.0%, p = 0.002; severe stratum, 53.7% vs. 22.2%, p < 0.001). Pathophysiologic biomarkers associated with progression were distinct at each stratum, including findings suggestive of inflammation in low baseline severity of illness versus hemophagocytic lymphohistiocytosis in higher baseline severity of illness. The findings suggest that there are clear worsening and recovering subphenotypes of COVID-19 respiratory failure after intubation, which are more predictive of outcomes than baseline severity of illness. Distinct progression biomarkers at differential baseline severity of illness suggests a heterogeneous pathobiology in the progression of COVID-19 respiratory failure.


Тема - темы
COVID-19/diagnosis , Multiple Organ Failure/diagnosis , Aged , COVID-19/complications , COVID-19/physiopathology , Critical Illness , Female , Humans , Male , Middle Aged , Multiple Organ Failure/etiology , Multiple Organ Failure/physiopathology , Organ Dysfunction Scores , Prognosis , SARS-CoV-2/isolation & purification , Severity of Illness Index
5.
Br J Anaesth ; 127(4): 648-659, 2021 Oct.
Статья в английский | MEDLINE | ID: covidwho-1329691

Реферат

Mechanical ventilation induces a number of systemic responses for which the brain plays an essential role. During the last decade, substantial evidence has emerged showing that the brain modifies pulmonary responses to physical and biological stimuli by various mechanisms, including the modulation of neuroinflammatory reflexes and the onset of abnormal breathing patterns. Afferent signals and circulating factors from injured peripheral tissues, including the lung, can induce neuronal reprogramming, potentially contributing to neurocognitive dysfunction and psychological alterations seen in critically ill patients. These impairments are ubiquitous in the presence of positive pressure ventilation. This narrative review summarises current evidence of lung-brain crosstalk in patients receiving mechanical ventilation and describes the clinical implications of this crosstalk. Further, it proposes directions for future research ranging from identifying mechanisms of multiorgan failure to mitigating long-term sequelae after critical illness.


Тема - темы
Brain/metabolism , Lung Injury/physiopathology , Respiration, Artificial/methods , Animals , Central Nervous System/metabolism , Critical Illness , Humans , Multiple Organ Failure/physiopathology , Positive-Pressure Respiration/methods
6.
Pediatr Rheumatol Online J ; 19(1): 104, 2021 Jun 30.
Статья в английский | MEDLINE | ID: covidwho-1292002

Реферат

BACKGROUND: H syndrome (HS) is a rare autoinflammatory disease caused by a mutation in the solute carrier family 29, member 3 (SCL29A3) gene. It has a variable clinical presentation and little phenotype-genotype correlation. The pathognomonic sign of HS is cutaneous hyperpigmentation located mainly in the inner thighs and often accompanied by other systemic manifestations. Improvement after tocilizumab treatment has been reported in a few patients with HS. We report the first patient with HS who presented cardiogenic shock, multiorgan infiltration, and digital ischemia. CASE PRESENTATION: 8-year-old boy born to consanguineous parents of Moroccan origin who was admitted to the intensive care unit during the Coronavirus Disease-2019 (COVID-19) pandemic with tachypnoea, tachycardia, and oliguria. Echocardiography showed dilated cardiomyopathy and severe systolic dysfunction compatible with cardiogenic shock. Additionally, he presented with multiple organ dysfunction syndrome. SARS-CoV-2 polymerase chain reaction (PCR) and antibody detection by chromatographic immunoassay were negative. A previously ordered gene panel for pre-existing sensorineural hearing loss showed a pathological mutation in the SCL29A3 gene compatible with H syndrome. Computed tomography scan revealed extensive alveolar infiltrates in the lungs and multiple poor defined hypodense lesions in liver, spleen, and kidneys; adenopathy; and cardiomegaly with left ventricle subendocardial nodules. Invasive mechanical ventilation, broad antibiotic and antifungal coverage showed no significant response. Therefore, Tocilizumab as compassionate use together with pulsed intravenous methylprednisolone was initiated. Improvement was impressive leading to normalization of inflammation markers, liver and kidney function, and stabilising heart function. Two weeks later, he was discharged and has been clinically well since then on two weekly administration of Tocilizumab. CONCLUSIONS: We report the most severe disease course produced by HS described so far in the literature. Our patient's manifestations included uncommon, new complications such as acute heart failure with severe systolic dysfunction, multi-organ cell infiltrate, and digital ischemia. Most of the clinical symptoms of our patient could have been explained by SARS-CoV-2, demonstrating the importance of a detailed differential diagnosis to ensure optimal treatment. Although the mechanism of autoinflammation of HS remains uncertain, the good response of our patient to Tocilizumab makes a case for the important role of IL-6 in this syndrome and for considering Tocilizumab as a first-line treatment, at least in severely affected patients.


Тема - темы
Cardiomyopathy, Dilated/physiopathology , Hereditary Autoinflammatory Diseases/physiopathology , Ischemia/physiopathology , Multiple Organ Failure/physiopathology , Shock, Cardiogenic/physiopathology , Antibodies, Monoclonal, Humanized/therapeutic use , COVID-19 , Cardiomyopathy, Dilated/diagnostic imaging , Cardiomyopathy, Dilated/therapy , Child , Glucocorticoids/therapeutic use , Hereditary Autoinflammatory Diseases/diagnosis , Hereditary Autoinflammatory Diseases/genetics , Hereditary Autoinflammatory Diseases/therapy , Humans , Ischemia/therapy , Kidney Diseases/diagnostic imaging , Kidney Diseases/physiopathology , Kidney Diseases/therapy , Liver Diseases/diagnostic imaging , Liver Diseases/physiopathology , Liver Diseases/therapy , Lung Diseases/diagnostic imaging , Lung Diseases/physiopathology , Lung Diseases/therapy , Lymphadenopathy/diagnostic imaging , Lymphadenopathy/physiopathology , Lymphadenopathy/therapy , Male , Methylprednisolone/therapeutic use , Multiple Organ Failure/therapy , Nucleoside Transport Proteins/genetics , Pulse Therapy, Drug , Respiration, Artificial , SARS-CoV-2 , Shock, Cardiogenic/therapy , Splenic Diseases/diagnostic imaging , Splenic Diseases/physiopathology , Splenic Diseases/therapy , Toes/blood supply , Tomography, X-Ray Computed , Treatment Outcome
7.
Lancet Respir Med ; 9(6): 622-642, 2021 06.
Статья в английский | MEDLINE | ID: covidwho-1219780

Реферат

The zoonotic SARS-CoV-2 virus that causes COVID-19 continues to spread worldwide, with devastating consequences. While the medical community has gained insight into the epidemiology of COVID-19, important questions remain about the clinical complexities and underlying mechanisms of disease phenotypes. Severe COVID-19 most commonly involves respiratory manifestations, although other systems are also affected, and acute disease is often followed by protracted complications. Such complex manifestations suggest that SARS-CoV-2 dysregulates the host response, triggering wide-ranging immuno-inflammatory, thrombotic, and parenchymal derangements. We review the intricacies of COVID-19 pathophysiology, its various phenotypes, and the anti-SARS-CoV-2 host response at the humoral and cellular levels. Some similarities exist between COVID-19 and respiratory failure of other origins, but evidence for many distinctive mechanistic features indicates that COVID-19 constitutes a new disease entity, with emerging data suggesting involvement of an endotheliopathy-centred pathophysiology. Further research, combining basic and clinical studies, is needed to advance understanding of pathophysiological mechanisms and to characterise immuno-inflammatory derangements across the range of phenotypes to enable optimum care for patients with COVID-19.


Тема - темы
COVID-19 , Multiple Organ Failure , SARS-CoV-2/pathogenicity , COVID-19/immunology , COVID-19/physiopathology , Endothelium/physiopathology , Humans , Immunity , Multiple Organ Failure/etiology , Multiple Organ Failure/physiopathology , Patient Acuity , Severity of Illness Index
8.
Turk J Med Sci ; 51(2): 440-447, 2021 04 30.
Статья в английский | MEDLINE | ID: covidwho-1211943

Реферат

Background/aim: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was first reported in Turkey on March 10, 2020 and the number of the patients are increasing day by day. Coronavirus disease 2019 (Covid-19) has high mortality rates in intensive care units (ICUs). We aimed to describe the demographic characteristics, comorbidities, treatment protocols, and clinical outcomes among the critically ill patients admitted to the ICU of our hospital. Materials and methods: This cohort study included 103 consecutive patients who had laboratory confirmed Covid-19 and admitted to ICU of Sakarya University Training and Research Hospital between March 19 and April 13, 2020. The final date of the follow-up was April 18. Results: The mean age of the patients was 69.6 ± 14.1 years. Most of the patients had increased CRP (99%), serum ferritin (73.8%), d-dimer (82.5%), and hs-troponin levels (38.8%). 34 patients (33%) had lymphocytopenia, 24 patients (23.3%) had thrombocytopenia. 63 patients (61.2%) developed acute respiratory distress syndrome (ARDS), 31 patients (30.1%) had acute kidney injury, and 52 patients (50.5%) had multiple organ dysfunction syndrome (MODS) during follow-up. Sixty-two patients (60.2%) received mechanical ventilation. As of April 18, of the 103 patients, 52 (50.5%) had died, 30 (29.1%) had been discharged from the ICU, 21 (20.4%) were still in the ICU. Conclusions: Covid-19 has high mortality rates in ICU. Patients with elevated procalcitonin, hs-troponin, d-dimer, and CRP levels and lower platelet count at admission have higher mortality.


Тема - темы
Acute Kidney Injury/physiopathology , COVID-19/physiopathology , Multiple Organ Failure/physiopathology , Respiratory Distress Syndrome/physiopathology , Respiratory Insufficiency/physiopathology , Age Factors , Aged , Aged, 80 and over , Antiviral Agents/therapeutic use , C-Reactive Protein/metabolism , COVID-19/metabolism , COVID-19/mortality , COVID-19/therapy , Cohort Studies , Continuous Renal Replacement Therapy , Critical Illness , Female , Ferritins/metabolism , Fibrin Fibrinogen Degradation Products/metabolism , Glucocorticoids/therapeutic use , Hospital Mortality , Humans , Intensive Care Units , Length of Stay , Lymphopenia/blood , Male , Middle Aged , Oxygen Inhalation Therapy , Platelet Count , Procalcitonin/metabolism , Prognosis , Respiration, Artificial , Respiratory Insufficiency/therapy , SARS-CoV-2 , Severity of Illness Index , Thrombocytopenia/blood , Troponin/metabolism , Turkey
9.
Am J Cardiovasc Drugs ; 20(6): 525-533, 2020 Dec.
Статья в английский | MEDLINE | ID: covidwho-755898

Реферат

Human factor Xa (FXa) is a serine protease of the common coagulation pathway. FXa is known to activate prothrombin to thrombin, which eventually leads to the formation of cross-linked blood clots. While this process is important in maintaining hemostasis, excessive thrombin generation results in a host of thrombotic conditions. FXa has also been linked to inflammation via protease-activated receptors. Together, coagulopathy and inflammation have been implicated in the pathogenesis of viral infections, including the current coronavirus pandemic. Direct FXa inhibitors have been shown to possess anti-inflammatory and antiviral effects, in addition to their established anticoagulant activity. This review summarizes the pharmacological activities of direct FXa inhibitors, their pharmacokinetics, potential drug-drug interactions and adverse effects, and the details of clinical trials involving direct FXa inhibitors in coronavirus disease 2019 (COVID-19) patients.


Тема - темы
COVID-19 Drug Treatment , COVID-19/physiopathology , Factor Xa Inhibitors/pharmacology , Factor Xa Inhibitors/therapeutic use , Blood Coagulation/drug effects , Cytokine Release Syndrome/drug therapy , Cytokine Release Syndrome/physiopathology , Cytokines/biosynthesis , Drug Interactions , Factor Xa/metabolism , Factor Xa Inhibitors/adverse effects , Factor Xa Inhibitors/pharmacokinetics , Half-Life , Humans , Inflammation Mediators/metabolism , Metabolic Clearance Rate , Multiple Organ Failure/physiopathology , Multiple Organ Failure/prevention & control , Pandemics , Protein Binding/physiology , SARS-CoV-2 , Severity of Illness Index
10.
Scand J Gastroenterol ; 56(5): 585-587, 2021 05.
Статья в английский | MEDLINE | ID: covidwho-1132187

Реферат

BACKGROUND: A relation between coronavirus disease 2019 (COVID-19) and acute pancreatitis has been suggested. However, the incidence and clinical relevance of this relation remain unclear. OBJECTIVE: We aimed to investigate the incidence, severity and clinical impact of acute pancreatitis in patients with COVID-19. METHODS: This is a cross-sectional study of a prospective, observational cohort concerning all COVID-19 patients admitted to two Dutch university hospitals between 4 March 2020 and 26 May 2020. Primary outcome was acute pancreatitis potentially related to COVD-19 infection. Acute pancreatitis was defined according to the revised Atlanta Classification. Potential relation with COVID-19 was defined as the absence of a clear aetiology of acute pancreatitis. RESULTS: Among 433 patients with COVID-19, five (1.2%) had potentially related acute pancreatitis according to the revised Atlanta Classification. These five patients suffered from severe COVID-19 infection; all had (multiple) organ failure and 60% died. None of the patients developed necrotizing pancreatitis. Moreover, development of acute pancreatitis did not lead to major treatment consequences. CONCLUSIONS: In contrast with previous research, our study demonstrated that COVID-19 related acute pancreatitis is rare and of little clinical impact. It is therefore debatable if acute pancreatitis in COVID-19 patients requires specific screening. We hypothesize that acute pancreatitis occurs in patients with severe illness due to COVID-19 infection as a result of transient hypoperfusion and pancreatic ischemia, not as a direct result of the virus.


Тема - темы
COVID-19 , Multiple Organ Failure , Pancreas , Pancreatitis , COVID-19/epidemiology , COVID-19/physiopathology , COVID-19/therapy , Cross-Sectional Studies , Female , Humans , Incidence , Intensive Care Units/statistics & numerical data , Ischemia/etiology , Ischemia/physiopathology , Length of Stay/statistics & numerical data , Male , Middle Aged , Multiple Organ Failure/diagnosis , Multiple Organ Failure/etiology , Multiple Organ Failure/physiopathology , Netherlands/epidemiology , Outcome and Process Assessment, Health Care , Pancreas/blood supply , Pancreas/physiopathology , Pancreatitis/diagnosis , Pancreatitis/epidemiology , Pancreatitis/etiology , Pancreatitis/physiopathology , Severity of Illness Index
11.
Br J Haematol ; 193(1): 43-51, 2021 04.
Статья в английский | MEDLINE | ID: covidwho-1066629
12.
BMJ Case Rep ; 14(1)2021 Jan 18.
Статья в английский | MEDLINE | ID: covidwho-1066836

Реферат

This case represents a rare fulminant course of fried-rice associated food poisoning in an immunocompetent person due to pre-formed exotoxin produced by Bacillus cereus, with severe manifestations of sepsis, including multi-organ (hepatic, renal, cardiac, respiratory and neurological) failure, shock, metabolic acidosis, rhabdomyolysis and coagulopathy. Despite maximal supportive measures (continuous renal replacement therapy, plasmapheresis, N-acetylcysteine infusion and blood products, and broad-spectrum antimicrobials) and input from a multidisciplinary team (consisting of infectious diseases, intensive care, gastroenterology, surgery, toxicology, immunology and haematology), mortality resulted. This case is the first to use whole genome sequencing techniques to confirm the toxigenic potential of B. cereus It has important implications for food preparation and storage, particularly given its occurrence in home isolation during the COVID-19 pandemic.


Тема - темы
Bacillus cereus/genetics , Exotoxins/genetics , Foodborne Diseases/diagnosis , Acetylcysteine/therapeutic use , Acidosis/physiopathology , Acidosis/therapy , Adult , Anti-Arrhythmia Agents/therapeutic use , Anti-Bacterial Agents/therapeutic use , Arrhythmias, Cardiac/physiopathology , Arrhythmias, Cardiac/therapy , Bacillus cereus/isolation & purification , Blood Coagulation Disorders/physiopathology , Blood Coagulation Disorders/therapy , Blood Transfusion , Brain Diseases , Continuous Renal Replacement Therapy , Fatal Outcome , Female , Foodborne Diseases/microbiology , Foodborne Diseases/physiopathology , Foodborne Diseases/therapy , Free Radical Scavengers/therapeutic use , Humans , Immunocompetence , Liver Failure/physiopathology , Liver Failure/therapy , Multiple Organ Failure/physiopathology , Multiple Organ Failure/therapy , Plasmapheresis , Renal Insufficiency/physiopathology , Renal Insufficiency/therapy , Rhabdomyolysis/physiopathology , Rhabdomyolysis/therapy , Sepsis/physiopathology , Sepsis/therapy , Shock/physiopathology , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Whole Genome Sequencing
13.
Swiss Med Wkly ; 151: w20420, 2021 01 18.
Статья в английский | MEDLINE | ID: covidwho-1055196

Реферат

The authors present the case of a 58-year-old man with the unique combination of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and, later on, haemophagocytic lymphohistiocytosis admitted to the intensive care unit. During his ICU stay the patient developed a variety of complications including acute respiratory distress syndrome, pulmonary embolism, right heart failure and suspected HLH leading to multiorgan failure and death. Despite the proven diagnosis of haemophagocytic lymphohistiocytosis, the excessively high ferritin levels of the patient did not seem fully explained by this diagnosis. Therefore, the authors want to highlight different causes of hyperferritinaemia in critically ill patients and underline the importance of differential diagnoses when interpreting continuously rising ferritin levels.


Тема - темы
Acute Kidney Injury/physiopathology , COVID-19/physiopathology , Heart Failure/physiopathology , Hyperferritinemia/blood , Liver Failure/physiopathology , Lymphohistiocytosis, Hemophagocytic/physiopathology , Pulmonary Embolism/physiopathology , Acute Kidney Injury/blood , Acute Kidney Injury/etiology , Alanine Transaminase/blood , COVID-19/blood , COVID-19/complications , COVID-19/therapy , Creatinine/blood , Disease Progression , Fatal Outcome , Heart Failure/etiology , Humans , Hyperferritinemia/etiology , Liver Failure/blood , Liver Failure/etiology , Lymphohistiocytosis, Hemophagocytic/etiology , Male , Middle Aged , Multiple Organ Failure/etiology , Multiple Organ Failure/physiopathology , Pulmonary Embolism/etiology , Respiratory Distress Syndrome/etiology , Respiratory Distress Syndrome/physiopathology , Respiratory Distress Syndrome/therapy , SARS-CoV-2
14.
J Crit Care ; 62: 38-45, 2021 04.
Статья в английский | MEDLINE | ID: covidwho-926275

Реферат

BACKGROUND: The majority of patients with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection are admitted to the Intensive Care Unit (ICU) for mechanical ventilation. The role of multi-organ failure during ICU admission as driver for outcome remains to be investigated yet. DESIGN AND SETTING: Prospective cohort of mechanically ventilated critically ill with SARS-CoV-2 infection. PARTICIPANTS AND METHODS: 94 participants of the MaastrICCht cohort (21% women) had a median length of stay of 16 days (maximum of 77). After division into survivors (n = 59) and non-survivors (n = 35), we analysed 1555 serial SOFA scores using linear mixed-effects models. RESULTS: Survivors improved one SOFA score point more per 5 days (95% CI: 4-8) than non-survivors. Adjustment for age, sex, and chronic lung, renal and liver disease, body-mass index, diabetes mellitus, cardiovascular risk factors, and Acute Physiology and Chronic Health Evaluation II score did not change this result. This association was stronger for women than men (P-interaction = 0.043). CONCLUSIONS: The decrease in SOFA score associated with survival suggests multi-organ failure involvement during mechanical ventilation in patients with SARS-CoV-2. Surviving women appeared to improve faster than surviving men. Serial SOFA scores may unravel an unfavourable trajectory and guide decisions in mechanically ventilated patients with SARS-CoV-2.


Тема - темы
COVID-19/complications , Critical Care , Multiple Organ Failure/etiology , Organ Dysfunction Scores , Respiration, Artificial , Survivors/statistics & numerical data , Aged , COVID-19/physiopathology , Cohort Studies , Critical Illness/mortality , Female , Humans , Male , Middle Aged , Multiple Organ Failure/physiopathology , Netherlands/epidemiology , Prospective Studies
15.
Inflammation ; 44(1): 13-34, 2021 Feb.
Статья в английский | MEDLINE | ID: covidwho-842380

Реферат

The widespread occurrence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has led to a pandemic of coronavirus disease 2019 (COVID-19). The S spike protein of SARS-CoV-2 binds with angiotensin-converting enzyme 2 (ACE2) as a functional "receptor" and then enters into host cells to replicate and damage host cells and organs. ACE2 plays a pivotal role in the inflammation, and its downregulation may aggravate COVID-19 via the renin-angiotensin system, including by promoting pathological changes in lung injury and involving inflammatory responses. Severe patients of COVID-19 often develop acute respiratory distress syndrome and multiple organ dysfunction/failure with high mortality that may be closely related to the hyper-proinflammatory status called the "cytokine storm." Massive cytokines including interleukin-6, nuclear factor kappa B (NFκB), and tumor necrosis factor alpha (TNFα) released from SARS-CoV-2-infected macrophages and monocytes lead inflammation-derived injurious cascades causing multi-organ injury/failure. This review summarizes the current evidence and understanding of the underlying mechanisms of SARS-CoV-2, ACE2 and inflammation co-mediated multi-organ injury or failure in COVID-19 patients.


Тема - темы
Angiotensin-Converting Enzyme 2/metabolism , COVID-19/physiopathology , Cytokine Release Syndrome/virology , Inflammation/virology , Multiple Organ Failure/virology , Receptors, Coronavirus/metabolism , Biomarkers/metabolism , COVID-19/metabolism , Cytokine Release Syndrome/metabolism , Cytokine Release Syndrome/physiopathology , Cytokines/metabolism , Humans , Inflammation/metabolism , Inflammation/physiopathology , Multiple Organ Failure/metabolism , Multiple Organ Failure/physiopathology , Severity of Illness Index
16.
Respir Physiol Neurobiol ; 283: 103548, 2021 01.
Статья в английский | MEDLINE | ID: covidwho-779595

Реферат

BACKGROUND: Globally, the current medical emergency for novel coronavirus 2019 (COVID-19) leads to respiratory distress syndrome and death. PURPOSE: This review highlighted the effect of COVID-19 on systemic multiple organ failure syndromes. This review is intended to fill a gap in information about human physiological response to COVID-19 infections. This review may shed some light on other potential mechanisms and approaches in COVID -19 infections towards systemic multiorgan failure syndromes. FINDING: SARS-CoV-2 intervened mainly in the lung with progression to pneumonia and acute respiratory distress syndrome (ARDS) via the angiotensin-converting enzyme 2(ACE2) receptor. Depending on the viral load, infection spread through the ACE2 receptor further to various organs such as heart, liver, kidney, brain, endothelium, GIT, immune cell, and RBC (thromboembolism). This may be aggravated by cytokine storm with the extensive release of proinflammatory cytokines from the deregulating immune system. CONCLUSION: The widespread and vicious combinations of cytokines with organ crosstalk contribute to systemic hyper inflammation and ultimately lead to multiple organ dysfunction (Fig. 1). This comprehensive study comprises various manifestations of different organs in COVID-19 and may assist the clinicians and scientists pertaining to a broad approach to fight COVID 19.


Тема - темы
Coronavirus Infections/immunology , Cytokine Release Syndrome/immunology , Multiple Organ Failure/immunology , Peptidyl-Dipeptidase A/metabolism , Pneumonia, Viral/immunology , Respiratory Distress Syndrome/immunology , Spike Glycoprotein, Coronavirus/metabolism , Acute Kidney Injury/immunology , Acute Kidney Injury/physiopathology , Angiotensin-Converting Enzyme 2 , Arrhythmias, Cardiac/immunology , Arrhythmias, Cardiac/physiopathology , Betacoronavirus/metabolism , COVID-19 , Coronavirus Infections/physiopathology , Cytokine Release Syndrome/physiopathology , Cytokines/immunology , Endothelium, Vascular/metabolism , Erythrocytes/metabolism , Gastrointestinal Diseases/immunology , Gastrointestinal Diseases/physiopathology , Gastrointestinal Tract/metabolism , Heart Failure/immunology , Heart Failure/physiopathology , Humans , Inflammation/immunology , Kidney/metabolism , Liver/metabolism , Liver Diseases/immunology , Liver Diseases/physiopathology , Lung/metabolism , Multiple Organ Failure/physiopathology , Myocardium/metabolism , Pandemics , Pneumonia, Viral/physiopathology , Respiratory Distress Syndrome/physiopathology , SARS-CoV-2 , Thromboembolism/immunology , Thromboembolism/physiopathology , Viral Load
17.
Mol Neurobiol ; 57(12): 4921-4928, 2020 Dec.
Статья в английский | MEDLINE | ID: covidwho-722661

Реферат

The global pandemic of novel coronavirus disease 2019 (COVID-19) has taken the entire human race by surprise and led to an unprecedented number of mortalities worldwide so far. Current clinical studies have interpreted that angiotensin-converting enzyme 2 (ACE2) is the host receptor for severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2). In addition, ACE2 is the major component of the renin-angiotensin system. ACE2 deteriorates angiotensin II, a peptide that is responsible for the promotion of stroke. The downregulation of ACE2 further activates an immunological cascade. Thus, researchers need to explore and examine the possible links between COVID-19 and ischemic stroke (IS). Human ACE2 expression level and pattern in various tissues might be decisive for the vulnerability, symptoms, and treatment outcomes of the SARS-CoV-2 infection. The swift increase in the knowledge of SARS-CoV-2 has given creditable evidence that SARS-CoV-2 infected patients also encounter neurological deficits. As the SARS-CoV-2 binds to ACE2, it will hamper the activity of ACE2 in providing neuroprotection, especially in the case of stroke patients. Due to the downregulation of ACE2, the inflammatory response is activated in the ischemic penumbra. The COVID-19 pandemic has affected people with various pre-existing diseases, including IS, in such a way that these patients need special care and attention for their survival. Several clinical trials are currently ongoing worldwide as well as many other projects are in different stages of conceptualization and planning to facilitate the effective management of stroke patients with COVID-19 infection.


Тема - темы
Betacoronavirus , Brain Ischemia/etiology , Coronavirus Infections/physiopathology , Pandemics , Pneumonia, Viral/physiopathology , Renin-Angiotensin System/physiology , Stroke/etiology , Angiotensin-Converting Enzyme 2 , Angiotensin-Converting Enzyme Inhibitors/therapeutic use , Betacoronavirus/pathogenicity , Betacoronavirus/physiology , Blood-Brain Barrier , Brain Ischemia/epidemiology , Brain Ischemia/immunology , Brain Ischemia/physiopathology , COVID-19 , Chemotaxis, Leukocyte , Comorbidity , Coronavirus Infections/complications , Coronavirus Infections/epidemiology , Cytokine Release Syndrome/etiology , Cytokine Release Syndrome/physiopathology , Cytokines/physiology , Encephalitis, Viral/complications , Encephalitis, Viral/physiopathology , Hemodynamics , Humans , Inflammation , Models, Immunological , Models, Neurological , Multiple Organ Failure/etiology , Multiple Organ Failure/physiopathology , Nervous System Diseases/epidemiology , Nervous System Diseases/etiology , Peptidyl-Dipeptidase A/physiology , Pneumonia, Viral/complications , Pneumonia, Viral/epidemiology , Receptors, Virus/physiology , Risk , SARS-CoV-2 , Stroke/epidemiology , Stroke/immunology , Stroke/physiopathology
20.
Lancet Diabetes Endocrinol ; 8(6): 546-550, 2020 06.
Статья в английский | MEDLINE | ID: covidwho-108776

Реферат

Diabetes is one of the most important comorbidities linked to the severity of all three known human pathogenic coronavirus infections, including severe acute respiratory syndrome coronavirus 2. Patients with diabetes have an increased risk of severe complications including Adult Respiratory Distress Syndrome and multi-organ failure. Depending on the global region, 20-50% of patients in the coronavirus disease 2019 (COVID-19) pandemic had diabetes. Given the importance of the link between COVID-19 and diabetes, we have formed an international panel of experts in the field of diabetes and endocrinology to provide some guidance and practical recommendations for the management of diabetes during the pandemic. We aim to briefly provide insight into potential mechanistic links between the novel coronavirus infection and diabetes, present practical management recommendations, and elaborate on the differential needs of several patient groups.


Тема - темы
Betacoronavirus/pathogenicity , Coronavirus Infections/physiopathology , Diabetes Mellitus, Type 1/drug therapy , Diabetes Mellitus, Type 2/drug therapy , Hypoglycemic Agents/adverse effects , Pandemics , Pneumonia, Viral/physiopathology , COVID-19 , Comorbidity , Contraindications, Drug , Coronavirus Infections/therapy , Diabetes Mellitus, Type 1/physiopathology , Diabetes Mellitus, Type 2/physiopathology , Humans , Hypoglycemic Agents/administration & dosage , Multiple Organ Failure/chemically induced , Multiple Organ Failure/physiopathology , Pneumonia, Viral/therapy , Practice Guidelines as Topic , Respiratory Distress Syndrome/chemically induced , Respiratory Distress Syndrome/physiopathology , SARS-CoV-2
Критерии поиска